Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metallomics ; 11(5): 925-935, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-30848269

RESUMO

Metal ions are abundant in microbial proteins and have structural, catalytic or electron-transferring roles. Metalloproteins are especially prevalent in respiratory chains where they couple electron flow with proton translocation across the membrane. Here, we explore the hypothesis that anaerobic respiratory chains can be investigated by quantitative whole-cell metallomics of the key metals Fe, Co, Ni and Mo. Sensitive and strictly quantitative data were obtained by inductively-coupled plasma mass spectrometry when using a triple quadrupole instrument (ICP-QqQ-MS). Our experiments provide data on the absolute cellular metal content of E. coli, an enrichment culture of "Ca. Kuenenia stuttgartiensis", Dehalococcoides mccartyi, Desulfovibrio vulgaris, Geobacter sulfurreducens and Geobacter metallireducens. A major obstacle in whole-cell metallomics is the interference caused by metal precipitates, observed for G. metallireducens and D. vulgaris. In the other investigated organisms, whole-cell metallomics gave biologically meaningful information, e.g. high Fe and Co content in "Ca. K. stuttgartiensis" and higher Mo content in E. coli when grown under nitrate-reducing conditions. The content of all four metals was almost constant in E. coli from the late exponential phase allowing precise measurements independent of the exact duration of cultivation. Deletion or overexpression of genes involved in metal homeostasis (Ni transport or Mo-cofactor metabolism) was mirrored by dramatic changes in whole-cell metal content. Deletion of genes encoding abundant metalloproteins or heterologous overexpression of metalloproteins was also reflected in the whole-cell metal content. Our study provides a reference point for absolute microbial metallomics and paves the way for the development of fast and easy mutation screens.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Escherichia coli/genética , Metais/metabolismo , Aerobiose , Escherichia coli/citologia , Escherichia coli/metabolismo , Limite de Detecção , Mutação/genética , Especificidade da Espécie
2.
Microbiology (Reading) ; 163(6): 878-890, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28640740

RESUMO

Escherichia coli has two machineries for the synthesis of FeS clusters, namely Isc (iron-sulfur cluster) and Suf (sulfur formation). The Isc machinery, encoded by the iscRSUA-hscBA-fdx-iscXoperon, plays a crucial role in the biogenesis of FeS clusters for the oxidoreductases of aerobic metabolism. Less is known, however, about the role of ISC in the maturation of key multi-subunit metalloenzymes of anaerobic metabolism. Here, we determined the contribution of each iscoperon gene product towards the functionality of the major anaerobic oxidoreductases in E. coli, including three [NiFe]-hydrogenases (Hyd), two respiratory formate dehydrogenases (FDH) and nitrate reductase (NAR). Mutants lacking the cysteine desulfurase, IscS, lacked activity of all six enzymes, as well as the activity of fumaratereductase, and this was due to deficiencies in enzyme biosynthesis, maturation or FeS cluster insertion into electron-transfer components. Notably, based on anaerobic growth characteristics and metabolite patterns, the activity of the radical-S-adenosylmethionine enzyme pyruvate formate-lyase activase was independent of IscS, suggesting that FeS biogenesis for this ancient enzyme has different requirements. Mutants lacking either the scaffold protein IscU, the ferredoxin Fdx or the chaperones HscA or HscB had similar enzyme phenotypes: five of the oxidoreductases were essentially inactive, with the exception being the Hyd-3 enzyme, which formed part of the H2-producing formate hydrogenlyase (FHL) complex. Neither the frataxin-homologue CyaY nor the IscX protein was essential for synthesis of the three Hyd enzymes. Thus, while IscS is essential for H2 production in E. coli, the other ISC components are non-essential.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/enzimologia , Formiato Desidrogenases/genética , Hidrogenase/genética , Complexos Multienzimáticos/genética , Nitrato Redutase/genética , Óperon , Anaerobiose , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Formiato Desidrogenases/metabolismo , Hidrogenase/metabolismo , Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Complexos Multienzimáticos/metabolismo , Nitrato Redutase/metabolismo , S-Adenosilmetionina/metabolismo , Enxofre/metabolismo
3.
IUBMB Life ; 66(1): 1-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24501007

RESUMO

Escherichia coli possesses four [NiFe]-hydrogenases that catalyze the reversible redox reaction of 2H(+) + 2e(-) ↔ H2. These enzymes together have the potential to form a hydrogen cycle across the membrane. Their activity, operational direction, and interaction with each other depend on the fermentation substrate and particularly pH. The enzymes producing H2 are likely able to translocate protons through the membrane. Moreover, the activity of some of these enzymes is dependent on the F0 F1 -ATPase, thus linking a proton cycle with the cycling of hydrogen. These two cycles are suggested to have a primary basic role in modulating the cell's energetics during mixed-acid fermentation, particularly in response to pH. Nevertheless, the mechanisms underlying the physical interactions between these enzyme complexes, as well as how this is controlled, are still not clearly understood. Here, we present a synopsis of the potential impact of proton-hydrogen cycling in fermentative bioenergetics.


Assuntos
Bactérias/metabolismo , Metabolismo Energético , Fermentação/fisiologia , Hidrogênio , Prótons , Força Próton-Motriz
4.
FEBS Lett ; 586(21): 3882-7, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23022438

RESUMO

The HypC and HypD maturases are required for the biosynthesis of the Fe(CN)(2)CO cofactor in the large subunit of [NiFe]-hydrogenases. Using infrared spectroscopy we demonstrate that an anaerobically purified, Strep-tagged HypCD complex from Escherichia coli exhibits absorption bands characteristic of diatomic CO and CN(-) ligands as well as CO(2). Metal and sulphide analyses revealed that along with the [4Fe-4S](2+) cluster in HypD, the complex has two additional oxygen-labile Fe ions. We prove that HypD cysteine 41 is required for the coordination of all three ligands. These findings suggest that the HypCD complex carries minimally the Fe(CN)(2)CO cofactor.


Assuntos
Monóxido de Carbono/metabolismo , Cianetos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Hidrogenase/metabolismo , Proteínas/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Sítios de Ligação , Monóxido de Carbono/química , Cátions Bivalentes , Coenzimas/química , Coenzimas/metabolismo , Cianetos/química , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Hidrogenase/química , Hidrogenase/genética , Ferro/química , Ferro/metabolismo , Ligantes , Plasmídeos , Ligação Proteica , Proteínas/química , Proteínas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...